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The success of modern maize breeding has been demonstrated 
by remarkable increases in productivity over the last four 
decades. However, the underlying genetic changes correlated 
with these gains remain largely unknown. We report here the 
sequencing of 278 temperate maize inbred lines from different 
stages of breeding history, including deep resequencing of 
4 lines with known pedigree information. The results show 
that modern breeding has introduced highly dynamic genetic 
changes into the maize genome. Artificial selection has 
affected thousands of targets, including genes and non-genic 
regions, leading to a reduction in nucleotide diversity and an 
increase in the proportion of rare alleles. Genetic changes 
during breeding happen rapidly, with extensive variation 
(SNPs, indels and copy-number variants (CNVs)) occurring, 
even within identity-by-descent regions. Our genome-wide 
assessment of genetic changes during modern maize breeding 
provides new strategies as well as practical targets for future 
crop breeding and biotechnology.

Maize is one of the most important crops in the world. After domes-
tication from teosinte (Zea mays ssp. Parviglumis) around 10,000 
years ago1 and a long period afterward of breeding by farmers, maize 
has undergone extensive scientific breeding in recent years. Modern 
breeding efforts over the last few decades have led to a remarkable 
yield increase for this crop2,3. Maize is exceptionally diverse4, and the 
pattern of genome-wide genetic variation among a number of maize 
lines has recently been reported5,6. To assess genetic changes during 
breeding over the last few decades, we sequenced the whole genomes of 
278 lines, including 90 Ex-PVP lines (lines with expired Plant Variety 
Protection Act certificates), 36 public US lines (publically avaliable, 
non-PVP lines) and 152 elite Chinese lines (Supplementary Table 1). 
These lines represent an extensive collection of the most advanced 
publically available temperate maize inbred lines.

A total of 1.3 trillion base pairs of data comprising 13 billion 100-bp 
reads was generated, with an average sequencing depth of ~2× for each 
line. In analyzing the data, 27,818,705 SNPs were identified. A subset 
of 6,686,326 SNPs with a missing data rate of less than 50% in the pop-
ulation was used for subsequent analysis (Supplementary Table 2).  
A total of 1,015,790 SNPs were found in genes, and 283,186 SNPs 

were found in coding sequences. We detected 158,296 nonsyn-
onymous and 138,918 synonymous SNPs in coding regions; the  
nonsynonymous-to-synonymous ratio was 1.14. We identified 3,046 
large-effect SNPs (including SNPs in start codons, stop codons and 
exon-intron splice sites) in 2,282 genes. To validate SNP quality, we 
compared data from three lines (Hp301, Mo17 and P39) to sequences 
in maize HapMap1 (ref. 5), finding over 95.6% accordance (out of 
207,825 overlapping sites). SNPs were further verified through a 
genome-wide association study (GWAS) for three traits (cob color, 
silk color and date to anthesis) after SNP imputation. The top signals  
of the GWAS for these three traits included the expected targets 
known to influence these traits. Examples of this included the 
identification of a SNP in the tandem repeat region of p1 (ref. 7) on  
chromosome 1 for cob color (a similar result was obtained in a previous  
GWAS for this trait)8, a SNP located 596 bp away from r1 (ref. 9) 
on chromosome 10 for silk color and a SNP 1.2 Mb away from Vgt1  
(ref. 10) on chromosome 8 for date to anthesis (Fig. 1, Supplementary 
Fig. 1 and Supplementary Table 3).

The overall nucleotide diversities (π) of these 278 lines were 
lower than previously reported in a more diverse population 
(0.006)5. Comparison of the Ex-PVP group and the public US 
group, two populations that are both representative of temperate 
maize (Fig. 2) but are separated by approximately 25 years of breed-
ing history, clearly indicated that the Ex-PVP group had 26% less 
nucleotide diversity (π = 0.0039) than their ancestral US lines (π =  
0.0053). The elite Chinese lines and public US lines had nearly 
the same level of nucleotide diversity (Supplementary Table 4)  
and showed little genetic differentiation (FST = 0.023). All three 

Genome-wide genetic changes during modern breeding 
of maize
Yinping Jiao1,2, Hainan Zhao1,2, Longhui Ren1,2, Weibin Song1,2, Biao Zeng1, Jinjie Guo1, Baobao Wang1, 
Zhipeng Liu1, Jing Chen1, Wei Li1, Mei Zhang1, Shaojun Xie1 & Jinsheng Lai1

1State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, China Agricultural University, Beijing, People’s Republic of China.  
2These authors contributed equally to this work. Correspondence should be addressed to J.L. (jlai@cau.edu.cn).

Received 13 December 2011; accepted 7 May 2012; published online 3 June 2012; doi:10.1038/ng.2312

a b c
20

–l
og

10
 (
P

)

O
bs

er
ve

d 
–l

og
10

 (
P

)

15

10

5

0

20

15

10

5

0

–l
og

10
 (
P

)

20

15

10

5

0

1 2 3 4 5 6

Chromosome

7 10 2 3 4 5 6

Expected –log10 (P)

7 44 46 48 50

Chromosome 1 (Mb)

528 910

Figure 1 GWAS results for cob color. (a) Manhattan plot. (b) Quantile-quantile 
plot. (c). Regional Manhattan plot of 5 Mb on either side of the peak SNP.

http://www.nature.com/doifinder/10.1038/ng.2312
http://www.nature.com/naturegenetics/
http://www.nature.com/naturegenetics/


©
20

12
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

2  ADVANCE ONLINE PUBLICATION Nature GeNetics

l e t t e r s

groups contained excess amounts of rare alleles, a finding supported 
by negative Tajima’s D values (Supplementary Table 4), suggesting an 
ongoing expansion of the population during modern maize breeding. 
The lower Tajima’s D value of the entire genome in these three popula-
tions compared to genic regions (Supplementary Table 4) suggests 
that stronger selection has occurred in non-genic regions.

In order to identify genomic targets of artificial selection, we 
screened for signals of selective sweeps in the three groups sepa-
rately using a composite likelihood ratio (CLR) approach11. Using 
a threshold by which the top 1% of CLR values are selected, we 
identified 405 regions in the public US group, 407 in the Ex-PVP  
group and 408 in the elite Chinese group as candidate regions that 
have experienced a selective sweep. These regions accounted for 
2.38%, 2.10% and 1.74% of the maize genome, respectively (Fig. 3, 
Supplementary Fig. 2 and Supplementary Table 5). These tar-
get regions had lower levels of nucleotide diversity and extremely 
negative Tajima’s D values (Supplementary Table 4). Although 
most targets mapped to protein-coding regions, a number of tar-
get regions did not (54 targets for the public US group, 48 for the  
Ex-PVP group and 65 for the elite Chinese group), which suggests an 
effect of artificial selection on non-genic regulatory elements. These 
targets showed little overlap with previously identified domestication 
or improvement loci12,13, indicating that most of these targets may 
have emerged from more advanced stages of maize breeding. There 
were a total of 1,835 genes from the maize filtered-gene model within 
the target regions (529 in the elite Chinese group, 689 in the public 
US group and 763 in the Ex-PVP group; Supplementary Table 5). 
The functions of some of these genes have previously been reported 
in maize (Supplementary Table 6).

Notably, only a small proportion of the selection targets iden-
tified in the Ex-PVP and the public US groups overlapped.  
A total of 51 targets identified in the US group (12.6%) fell within the 
1% tails of CLR in the Ex-PVP group, and 149 (36.8%) fell within the 
5% tails. Similarly, 128 targets identified in the Ex-PVP group (31.4%) 

fell within the 5% tails of CLR in the US group. Our data suggest that 
different stages of maize improvement could have targeted different 
genomic regions, with targets in the early stages of breeding poten-
tially fixed in the population of later stages of breeding. Similarly, a 
limited number of targets were shared between the Chinese and US 
maize lines. A total of 207 targets of selection in the Chinese group 
(50.7%) fell within the 5% tails of CLR of the US group and/or the 
Ex-PVP group, and 116 targets (28.4%) in the US group and 137 
targets (33.8%) in the Ex-PVP group fell within the 5% tails of CLR 
of the Chinese group. Limited sharing of candidate regions of selec-
tion between populations from different geographic regions is also 
observed in humans14. The lack of shared regions might be because 
the Chinese and US maize lines underwent different selection pres-
sures to adapt to local agricultural conditions. An alternative explana-
tion is that the same agronomic trait may be obtained by selection on 
different genomic regions. For example, seed size in rice is known to 
be controlled by multiple genes15–19.

Genetic changes within a breeding program were explored by deeply 
sequencing the genomes of four inbred lines (5003, 8112, 478 and 
Zheng58) with known breeding pedigree information (Supplementary 
Fig. 3). These four lines, which are sampled from three generations of 
breeding, represent two major breeding advances that gave rise to the 
female parent of the most widely planted hybrid in China. A total of 
256 Gb of data was obtained for the four lines, with an average genome 
coverage of 27× (Supplementary Table 7), including previous data 
that reported 5× coverage of a subset of these lines6.

Mapping the reads of these four deep-sequenced lines to the maize 
B73 reference genome20 identified a total of 5,058,396 SNPs that were 
covered by at least 5 reads, with 895,527 located in genic regions 
(31,262 genes). Among the 216,923 SNPs in coding regions, 2,153 
were found in the large-effect sites of 1,986 genes (Supplementary 
Table 8). Additionally, 287,504 short indels of 1–10 bp in length were 
identified in the 4 inbred lines. A total of 2,595 of these indels were 
located in protein-coding regions (Supplementary Table 9). Most 
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Figure 2 Neighbor-joining tree of the 126 US maize inbred lines. Lines 
in the public US group are shown in red followed by an asterisk. Ex-PVP 
lines are shown in black.
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of the indels identified were 1 bp in length (Supplementary Fig. 4). 
The SNPs called from deep-resequencing data were validated through 
comparison with a local de novo assembly of genic regions (99.42% 
concordance; Supplementary Table 10). Validation with simulative 
reads generated from nine Mo17 BAC sequences showed an accuracy 
of 99.1% for SNPs and 95.0% for indels. Comparison with the nine 
Mo17 BAC sequences also suggested that our pipeline had missed 
36.9% of SNPs and 76.1% of indels. Most of the missed SNPs and 
indels were located in SNP or indel clusters (for example, regions with 
more than three SNPs within 10 bp).

Identity-by-descent (IBD) regions inherited across breeding 
generations can be used to estimate the rate of genetic changes 
during the breeding process (Supplementary Fig. 3). There were 
IBD blocks originating from 5003 that were inherited through-
out all three generations. Within these blocks, regions of a total of  
176 Mb covered by at least five reads in all three generations were 
found (Table 1). In these regions, 658 substitutions were identified 
between 5003 and 478, and all remained unchanged from 478 to 
Zheng58, leading to an estimated nucleotide substitution rate of 7.17 ×  
10−8 per site per year. Similarly, regions of 341 Mb originally from 
8112 were identified. A total of 663 substitutions between 8112 and 
478 in these regions gave an estimated substitution rate of 3.73 × 10−8 
per site per year. To rule out the possibility of pre-existing hetero-
zygosity in the ancestral 5003 or 8112 lines, we used regions totaling  
518 Mb in length in which there was no polymorphism between 5003 
and 478 or between 8112 and 478 but for which there were polymor-
phisms between 478 and Zheng58. A total of 1,312 SNPs that were 
different between 478 and Zheng58 in these 518-Mb regions gave an 
estimate of 4.91 × 10−8 substitutions per site per year. The average rate 
from the three estimates is 5.39 × 10−8 substitutions per site per year. 
In genic regions, the average rate was 4.79 × 10−8 substitutions per site 
per year. Intergenic regions, being rich in transposons and repetitive 
sequences, are hypermethylated21 and could have higher mutation 
rates. The estimate of whole genome average single-base mutation rate 
was slightly higher than previous estimates for tb1 between maize and  

teosinte22 and in humans23, and is ten times more than estimates in 
Arabidopsis thaliana24 and Caenorhabditis elegans25. Nevertheless, the 
transition/transversion ratio (2.5) in maize was very similar to that 
observed in Arabidopsis (2.4)24, with the highest mutation rate found 
for GC>AT transversions26 (Supplementary Fig. 5).

Similarly, there were 3,142 indels of 1–10 bp in length found in the 
IBD regions of the three generations. A total of 716 of these indels, 
newly generated during breeding, were located in genic regions (86% 
were 1 or 2 bp in length, causing changes to the encoded protein 
sequences). The average mutation rate of short indels was estimated 
to be 6.13 × 10−8 substitutions per site per year (Table 1), which is 
higher than that described in Arabidopsis24.

We found that 8.5% of maize genes from the filtered-gene model 
(3,305 genes) had CNVs among the four genomes. The average CNV 
rate calculated by us (8.57 × 10−4 per gene per year) was lower than 
that described in humans (1.2 × 10−2)27. We note that our CNV analy-
sis was focused on genic regions, which may partially explain these 
differences. Compared to its two parents, 5003 and 8112, the inbred 
478 line showed altered copy numbers in most CNV-containing genes. 
There were 333 genes in inbred 478 with copy numbers that were 
higher or lower than in either parent (Supplementary Table 11).

The high frequency of de novo genetic changes identified in IBD 
regions suggests that many new alleles were generated during the 
breeding process. As suggested from a study in soybean28, these newly 
acquired alleles can potentially have phenotypic implications.

Rare alleles, like those reported in the DGAT gene of maize29 
and the NAM-B1 gene of wheat30, are very important sources of 
genetic improvement made through breeding. To further investi-
gate the association of rare alleles with important agricultural traits, 
we inspected the allele frequencies of SNPs reported to be associ-
ated with agronomic quantitative trait loci (QTLs). Of 173 QTL-
associated SNPs identified from a GWAS of the nested association 
mapping (NAM) population8,31,32 and detected in our resequenced 
population, 63 (36.4%) had allele frequencies of less than 0.05 
(Supplementary Fig. 6).

The availability of sequence information for 278 maize lines and 
a set of deep-sequenced lines allowed us to quantify changes in rare 
alleles during the breeding process. We found apparent accumulation 
of rare alleles during breeding, with 55% of segregating sites being 
rare in the Ex-PVP group, contrasting with 38% in the public US 
group. Similarly, the proportions of rare alleles in elite maize lines 
have continuously increased from 0.8% to 4.61% following advances 
in breeding (Fig. 4).

table 1 Mutation rates of base substitutions, short indels and 
copy-number variations

5003→478a 8112→478a 478→Z58b

Number of years since 
breeding

26 26 24

Number of sites surveyed 
(all three generation with 
sequencing depth of ≥5)

176,528,421 341,563,217 518,091,638

Number of single-base  
mutations

658 663 1,312

Number of single-base  
mutations in genic regions

197 206 133

Number of single-base  
mutations in coding regions

80 81 32

Number of nonsynonymous 
single-base mutations

41 37 21

Single-base substitution rate 
(per site per year)

7.17 × 10−8 3.73 × 10−8 5.28 × 10−8

Number of 1–10 bp indels 708 825 1,609

Mutation rate of indels of 
1–10 bp (per site per year)

7.71 × 10−8 4.64 × 10−8 6.47 × 10−8

Number of genes surveyed 5,256 7,860 13,116

Number of CNV genes 225 292 590

CNV mutation rate (per gene 
per year)

8.23 × 10−4 7.14 × 10−4 9.37 × 10−4

aOnly the mutations transferred from 478 to Z58 were considered. bOnly the mutation sites 
showing no polymorphism in comparison of 8112 and 478 or 5003 and 478 were considered.
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Our results suggest that the relative fraction of rare alleles can 
potentially be used as a selection index in future breeding programs, 
which may reduce the time and effort required in large-scale field 
tests, particularly as the costs of genotyping become reasonably low. 
Additionally, genes identified within the breeding target regions, 
especially those in the Ex-PVP group, might be directly applied to 
future breeding or biotechnology programs. The SNP data from elite 
inbreds will also be useful when new breeding technologies, such as 
genome selection33,34, come of age in maize.

MeTHOdS
Methods and any associated references are available in the online 
version of the paper.

Accession codes. Sequencing data from 278 maize inbred lines has 
been deposited in the NCBI Sequence Read Archive (SRA) database 
(SRA049859). Contigs with length of more than 200 bp generated in 
assembling 1,000 genes from the four deep-sequenced inbred lines 
have been deposited in NCBI GenBank JQ886798–JQ887980).

Note: Supplementary information is available in the online version of the paper.
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ONLINe MeTHOdS
Inbred line resequencing and variant identification. Total DNA from 278 
maize inbred lines was extracted with the hexadecyltrimethylammonium bro-
mide (CTAB) method for Illumina sequencing. Paired-end reads obtained from 
sequencing were mapped to the maize B73 genome with Burrows-Wheeler Aligner 
(BWA) software35. SAMtools36 was used to convert mapping results to bam format, 
and duplicated reads were filtered with the help of the Picard package36.

SNP detection was performed using the Genome Analysis Toolkit (GATK, 
version 1.0.4418)37, as it supports multi-sample analysis. With the exception 
of the four inbred lines (8112, 5003, 478 and Zheng58) that were analyzed by 
deep resequencing whose SNPs were called separately as a group, our SNP 
pipeline aligned reads of at least 80 inbred lines all together with an overall 
coverage of greater than 200×, which significantly minimizes error in SNP 
calling. Realignment around indels was performed first to avoid alignment 
errors. Two steps of realignment were performed in GATK: the first step with 
the RealignerTargetCreator package identified regions in which realignment 
was needed, and the second step with IndelRealigner performed realignment 
within the regions found in the first step. After realignment, base-quality 
score recalibration was performed with two packages (CountCovariates and 
TableRecalibration). SNP calling was performed with UnifiedGenotyper, and 
mapping adjustment was then performed. The threshold of SNP calling was 
set to 20 for both base quality and mapping quality. As recommended by the 
GATK software, we set the confidence score of SNP calling to be more than 
50, with the parameter -stand_call_conf set to 50. Four extra filtration steps 
were used for SNP calling in the four lines with deep-resequencing data (5003, 
8112, 478 and Zheng58) with an average coverage of 27×. SNPs were discarded  
(i) if the mapping quality of 10% of the reads that covered a SNP were 0,  
(ii) if they had 10 bp around indels (excluded using GATK and a python 
script, makeIndelMask), (iii) if they occurred in a cluster (more than three 
SNPs within 10 bp) and (iv) if the coverage of the SNP locus was outside of 
5–300×. All SNP annotation was performed according to the second version 
of the maize B73 genome.

SAMtools software was used for 1–10 nt indel detection with mapping 
quality set to ≥20. Only homozygous indels with more than five reads  
were recorded.

The method for the detection of CNVs was based on a described event-
wise testing algorithm38 with some adjustments. Read depth of every 100-bp 
window was computed by counting the start position of reads within this 
window. Considering the bias in read depth caused by GC content, we first 
adjusted the read depth of every window with the equation Adjusted_read 
Depth = readDepth × m / (mGC), where Adjusted_readDepth is the adjusted 
read depth, readDepth is the read depth of the window, m is the median value 
of all windows of a chromosome and mGC is the median read depth of all 
windows that have the same GC content as the adjusted window. After adjust-
ment for GC content, we carried out CNV detection using the event-wise 
testing algorithm.

GWAS with the 278 inbred lines. We performed a GWAS for three traits: 
cob color, date to anthesis and silk color. All inbred lines were planted on  
8 May 2011 in the experimental station of the China Agricultural University. 
Five randomly selected plants in the middle of the plots for each line were 
measured, and their mean value was used for the GWAS. The three traits 
were scored. Date to anthesis was measured as the days after planting to 
50% anthesis and shed pollen at or near flowering time. Silk color was mea-
sured when the filaments were exposed from the ear by approximately 3 cm.  
After harvest, ears were dried naturally, and cob color was determined.

Because of the lack of HapMap reference, three available software programs 
(Beagle39, Fastphase40 and Npute41) were tested for imputation. To compare 
the accuracy of the three software programs, we randomly selected 1,000 SNPs 
and randomly missed 1 site to check whether the sequence from imputation 
was the same as that in the sequencing result. The same processes were carried 
out 1,000 times. The accuracy of Beagle, Fastphase and Npute were 95.2%, 
92.1% and 93.5%, respectively, and Beagle used the least computation time. 
Therefore, we used Beagle to impute missing genotypes. Population structure 
was estimated with GCTA42 tools. We used a compressed mixed linear model 
to perform the GWAS with GAPIT43 software.

Validation of SNP calling through local de novo assembly. We chose 1,000 
single-copy genes and conducted reference-guided local assembly using 
Schneeberger’s pipeline with some modification44. Reads mapped to each gene 
were grouped together. There were three types of reads in each set: (i) paired-
end reads with both reads mapped, (ii) paired-end reads with an unmapped 
read and (iii) single reads for which the pair mapped outside of gene regions. 
Each read set was assembled using CAP3 (ref. 45) (parameters of −z = 2, −u = 2,  
−v = 2, −o = 20, −j = 35, −s = 251 and −h = 80). Paired-end reads in each read 
set were used for scaffolding CAP3 contigs with SSAPCE46 (parameters of 
−t = 5 and −k = 2). SSAPCE scaffolds were used for discovering variations. 
Genes with no more than five contigs were used to validate SNPs using BWA 
and SAMtools software. The consistency rate was calculated by comparing the 
SNPs called from short-read mapping with the local de novo assembly.

Simulation test on read alignment of Mo17 BAC sequences. All nine Mo17 
BAC sequences were downloaded from NCBI. The BWA mapping tool gener-
ates mapping quality of 0 for repetitive sequences that are mapped to multiple 
sites. Because our pipeline used reads with mapping quality of greater than 
20, we used only the non-repeat region (single-copy region, mapped uniquely 
in the genome) of the BAC sequences to generate 25× simulative reads by 
Mapping and Assembly with Qualities (MAQ). SNPs and indels were called by 
our pipeline using these reads, which were compared with the read obtained 
with the long BAC sequences in SAMtools.

Population genetics analysis and selective sweep scanning. Only SNPs with 
less than 50% missing were used for population analysis and selective sweep 
scanning. The neighbor-joining tree of the 126 US lines was constructed with 
PHYLIP47 version 3.69. To avoid effects from population structure, we first 
compared each pair of the 278 inbred lines. Nucleotide diversity (π)48, Tajima’s 
D values49 and FST values50 were calculated in nonoverlapping windows of 200 
SNPs using the libsequence C++ library51 and in-house Perl scripts. Selective 
sweep signals were determined by calculating CLR as described11. A CLR test 
was calculated on each 50-kb window across each chromosome. Contiguous 
windows with 10% tails of CLR were merged. Genomic regions with the top 1% 
CLR values were considered to be targets of selection. Genes within selection 
targets were considered to be candidate selection genes.

Recombination map and mutation rates in pedigree inbred lines. We 
used a sliding-window method to construct the recombination map of the 
478 and Zheng58 lines52. For 478, SNPs were filtered by two criteria: (i) the 
SNP site had to be sequenced no less than five times in all three inbred lines 
(5003, 8112 and 4780), and (ii) the SNP had to be polymorphic between 
the two parents (5003 and 8112). Sliding windows were used to calcu-
late the SNP ratio between 8112 and 5003 along each chromosome, with a 
window size of 1,015 SNPs (~1 Mb of physical distance) and a step size of  
105 SNPs. A breakpoint was defined when the SNP ratio switched from >1 to 
<1. For Zheng58, because there were only data from one parent, we used the 
SNP sites with sequencing depth of ≥5 in both 478 and Zheng58.

To investigate the mutation rate during breeding, we divided the genome 
into 5003 origin and 8112 origin. Windows with a parent SNP ratio of ≥90% 
that were 10 kb away from breakpoints were selected for further analysis. All 
SNPs in the resulting windows of 478 were compared again to its parents, 
5003 and 8112. Windows in which more than 20% of SNPs were different 
from both parents were excluded. Regions covered by all three generations 
(5003, 478 and Zheng58, or 8112, 478 and Zheng58) were used for mutation  
rate calculations.

To identify high-confidence IBD regions for mutation rate calculation, 
windows with a parental SNP ratio of ≥90% that were 10 kb away from break-
points were selected. Only regions shared by three generations (5003, 478 and 
Zheng58, or 8112, 478 and Zheng58) were selected for mutation rate calcula-
tion. Single-nucleotide mutation rate and the mutation rate of short indels of 
1–10 bp were calculated as in C. elegans25.
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